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A B S T R A C T

Clustering of multi-view data divides objects into groups by preserving structure of clusters in all views,
requiring simultaneously takes into consideration diversity and consistency of various views, corresponding to
the shared and specific components of various views. Current algorithms fail to fully characterize and balance
diversity and consistency of various views, resulting in the undesirable performance. Here, a novel Multi-View
Clustering with Deep non-negative matrix factorization and Multi-Level Representation (MVC-DMLR) learning
is proposed, which integrates feature learning, multi-level topology representation, and clustering of multi-view
data. Specifically, MVC-DMLR first learns multi-level representation (also called deep features) of objects with
deep nonnegative matrix factorization (DNMF), facilitating the exploitation of hierarchical structure of multi-
view data. Then, it learns multi-level graphs for each view from multi-level representation, where relations
between diversity and consistency are addressed at various resolutions. MVC-DMLR integrates multi-level
representation learning, multi-level topology representation learning and clustering, which is formulated as
an optimization problem. Experimental results show the superiority of MVC-DMLR to baselines in terms of
accuracy, F1-score, normalized mutual information and adjusted rand index.
1. Introduction

As one of prevalent tasks in machine learning, clustering identifies
groups of objects (clusters, modules, or communities) such that highly
similar objects are assigned into the same groups, and dissimilar ones
into different ones. The critical techniques of clustering are how to
define similarity of objects, and how to perform assignment of objects.
For example, K-means (Hartigan & Wong, 1979; MacQueen, 1965)
employs Euclidean distance as similarity, and performs assignment the
nearest principle, i.e., each object is assigned to the nearest group.
NMF (Lee & Seung, 1999) learns representation of objects in the low-
dimensional subspace, where similarity of objects is exploited. And,
spectral clustering (Ng, Jordan, & Weiss, 2001; Von Luxburg, 2007;
Wang, Qin, Nie, & Li, 2018) obtains closeness of objects in terms of
spectral embedding that is associated with eigenvectors of matrices.
However, the traditional algorithms target to clustering single-view
data, i.e., data are observed from one perspective. Actually, one per-
spective is insufficient to fully characterize complex systems, resulting
in multi-view data (Fahad et al., 2014). For example, movies attract
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audiences with multiple media, such as images, sounds and music,
which maximize the stimulation of the audience’s senses. In social
networks, individuals communicate with counterparts with different
manners, including emails, telephones and webchat.

Thus, it is of great significance to clustering of multi-view, which
assigns objects into various groups such that highly similar objects in all
views are assigned into the same groups, and those that are dissimilar
for all views into different clusters. Multi-view clustering provides
an insight into mechanisms of systems because comprehensive and
accurate patterns in multi-view data (Xu, Tao, & Xu, 2013). Compared
to clustering of single view data, multi-view clustering is much more
complicated for two typical reasons. First, heterogeneity of various
views poses a great challenge, and how to address heterogeneity of
various views is difficult. Second, clustering of multi-view data simulta-
neously takes into account similarity of objects within and across views,
which are difficult to model and balance.

Luckily, many approaches are proposed with various strategies to
address these challenges (Xu et al., 2013). According to the principles of
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data mining, AI training, and similar technologies. 
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algorithms, available approaches are divided into four classes, i.e., co-
training-, kernel-, graph-, and subspace-based ones, where methods
n the first category apply single-view clustering to multi-view data

with simply extension to avoid exploiting relations among various
iews. Actually, the simplest strategy is transformation, which converts
ulti-view data into one view, where clustering analysis is directly

executed on collapsed data. However, it is criticized for performance of
algorithms because intrinsic structure of data may be destroyed during
ransformation. To avoid destroying structure of data, co-training-based
ethod (Huang, Xu, Tsang, & Kang, 2020; Kumar & Daumé, 2011;

Kumar, Rai, & Daume, 2011) first performs clustering for a given view,
nd clusters are utilized to guide clustering of other views, which
re criticized for the poor performance and robustness of algorithms.
pecifically, performance of algorithms largely depends on the or-

der of views for clustering, and these methods also fail to address
heterogeneity of various views.

To attack this problem, the kernel-based methods (Chen, Atev, &
Lerman, 2009; Guo, Zhang, Liu, Cui, & Zhao, 2014; Liu, Liu, Yang,
iao, & Xia, 2023; Ren, Sun, & Wei, 2021; Tzortzis & Likas, 2012)
mploy a kernel function mapping objects onto a high dimensional
pace, where clustering is performed by integrating various views
ith a linear manner. The underlying assumption is that views are

omparable in the kernel space, i.e., heterogeneity of multi-view data
an be addressed with kernel functions. But, these algorithms are only
napplicable for multi-view data with complicated structure because
hey fail to maintain inherent structure of the original views, result-
ng in the low accuracy. Furthermore, selection of appropriate kernel
unctions for each view is also very complicated, which are determined
y distribution and structure of views that are difficult to model. The
raph-based methods (Gao et al., 2021; Guo, Che, & Leung, 2024; Hou,
ie, Tao, & Yi, 2017; Huang, Tsang, Xu, & Lv, 2022; Wang, Yang, & Liu,

2019) first construct a network for each view, and the perform clus-
tering on the constructed networks by exploring topological structure
of networks. These algorithms significantly improve the performance
of clustering, demonstrating that graphs are promising in multi-view
clustering field. Graph-based methods perfectly address heterogeneity
of multi-view data, but they neglect relations among various views.
And, the subspace-based methods (Dong, Wu, & Zhang, 2024; Luo,
Zhang, Zhang, & Cao, 2018; Xie, Gao, & Yang, 2023; Zhang et al., 2020)
rojects all views into a shared subspace, where objects in various
iews are compatibly represented, facilitating the identification of con-

sistence among various views. These algorithms dramatically enhance
performance of multi-view clustering, proving that relations among
various views are of great importance. However, selecting appropriate
subspaces to represent various views is really difficult.

Although many excellent algorithms for multi-view clustering are
developed, some critical and unsolved problems remain. Firstly, current
algorithms concentrate on learning consistent representation of objects
of various views in the shared algebra space, ignoring the intrinsic
structure of representation. For example, the kernel-based methods
focus on selecting of proper kernel functions that map objects onto
kernel spaces, and subspace-based approaches are devoted to construct
the low-rank shared subspace(s). Actually, objects of various views
cannot be precisely represented with one type of space(s) because of
the complexity of multi-view data. Second, available algorithms model
consistency and diversity of various views by ignoring hierarchical
structure of features, failing to fully characterize structure of clusters
in multi-view data (Cao, Zhang, Fu, Liu, & Zhang, 2015; Gao et al.,
2021; Li, Jiang, & Zhou, 2014; Yin, Wu, He, & Wang, 2015). Third,
current algorithms separate feature learning, diversity and consistency
learning, and clustering, failing to reach a tradeoff between these items.
Recently, deep representation learning (Huang, Zhou, Zhao, He, & Xie,
2023; Ji, Zhang, Li, Salzmann, & Reid, 2017; Zhu et al., 2019) is
popular for the exploration of structure of complicated data, showing
ossibility of address relations of various views with deep features of
bjects.
2 
To address problems mentioned above, a cohesive multi-view clus-
ering with DNMF and multi-level representations (called MVC-DMLR)
s proposed, which integrates feature learning, consistency and diver-

sity learning, and clustering of multi-view data. MVC-DMLR is mainly
composed of three components, i.e., deep feature learning, topology
representation learning, and multi-view clustering (Fig. 1). Specifi-
cally, MVC-DMLR employs DNMF to learn multi-level representation
of objects, which explores the hierarchical structure of features of
objects, improving capability of representation. To learn consistency
and diversity of various views, MVC-DMLR decomposes multi-level
topology representation into the consistency and diversity parts, which
are characterized at various levels. In other words, relations of var-
ious views are characterized with different resolutions, significantly
enhancing accuracy of relations of views. MVC-DMLR integrates all
these procedures into an overall optimization problem. Experiments
demonstrate that MVC-DMLR is better than baselines for clustering of
multi-view data.

In all, contributions of this study are summarized as

- A novel multi-level topology representation is provided to ex-
ploit hierarchical structure of features, which explicitly quanti-
fies consistency and diversity of various views, improving qual-
ity of features of objects.

- A novel integrative framework is proposed, which integrates
deep feature learning, multi-level topology representation, and
multi-view clustering. In this circumstance, representation is
learned in accordance with clustering, which greatly improve
performance of clustering.

- Experimental results prove superiority of MVC-DMLR to base-
lines, providing an effective model for multi-view clustering.

And, related work and preliminaries are summarized in Sections 2
and 3, respectively. Sections 4 and 5 present procedure and perfor-

ance of MVC-DMLR, respectively. Section 6 concludes this study.

2. Related work

Clustering effectively analyzes large-scale data that cannot be ma-
nipulated as a whole, which divides objects into compact groups such
that objects are similar inside of clusters, and dissimilar outside of clus-
ers. And, multi-view clustering simultaneously takes into consideration
imilarity of objects within each view, and relations of across views.
ccording to principles of algorithms, current approaches belong to one
f four typical classes, i.e., co-training-, kernel-, graph- and subspace-
ased approaches, where the first two categories focus on manipulating
ata, and the latter two ones concentrate on operating features of
bjects.

Co-training-based algorithms (Huang et al., 2020; Kumar & Daumé,
2011; Kumar et al., 2011) assume that views are highly related, and
clusters of one view is useful for guiding clustering of other views.
Thus, these algorithms first perform clustering for a given view with
the traditional single-view clustering, and then execute clustering of
another view by setting clusters of the previous view(s) as prior, where
relations among views are addressed with clusters. For example, Co-
SC (Kumar & Daumé, 2011) and Co-Reg (Kumar et al., 2011) first
erform clustering for a given view, and then independently repeat
lustering for the rest views by setting the previous obtained clusters
s prior information. In essence, co-training-based algorithms simply
xtend single-view clustering and apply to multi-view scenarios with
 sequential manner. These algorithms are simple and easy to under-
tand, which are unpopular for the low accuracy. First, performance
f algorithms is instable because orders of views for clustering dra-

matically effect performance of clustering because errors of clusters
in one view are very likely be accumulated in other views. Second,
relations among views are degenerated to relation between a pair of
views, failing to fully address correlation among them.
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Fig. 1. Overview of the MVC-DMLR algorithm, which consists of deep feature learning, multi-level topology learning and clustering, where the first procedure learns multi-level
representation with DNMF, multi-level topology representation learning measures consistency and diversity of various views by manipulating multi-level features of objects, and
clustering procedure identifies clusters, respectively.
Table 1
Main symbols and description.

Symbol Definition and description

 Multi-view data {𝑋[1] ,… , 𝑋[𝜈]}
𝑋[𝑣] Profile of the 𝑣th view
u 𝑚𝑣 Number of attributes in 𝑋[𝑣].
𝐵[𝑣,𝑖] The 𝑖th level basis matrix of deep NMF for 𝑋[𝑣]

𝐹 [𝑣,𝑖] The 𝑖th level coefficient matrix of deep NMF for 𝑋[𝑣]

𝐶 [𝑣] The conserved topology representation for 𝑋[𝑣]

𝑈 [𝑣,𝑖] The 𝑖th level-specific topology representation for 𝑋[𝑣]

𝑇 𝑟(𝑋) Trace of X i.e. 𝑡𝑟(𝑋) = ∑

𝑖 𝑥𝑖𝑖
𝑊 Adjacent matrix of affinity graph 𝐺

To fully address relations among views, the kernel-based algo-
rithms (Chen et al., 2009; Guo et al., 2014; Liu et al., 2023; Ren
et al., 2021; Tzortzis & Likas, 2012) hypothesize that there exists an
space, where all views are compatible so that the relations among
views can be directly modeled. Therefore, these algorithms employ
a kernel function to map objects in each view onto a high dimen-
sional kernel space, and clustering is performed with a linear manner
to combine all these views. For instance, KSCC (Chen et al., 2009)
employs non-flat manifolds to hybrid linear model for the construc-
tion of kernel functions, and Tzortzis and Likas (2012) assume that
weights for kernel functions are related to quality of views. Generally
speaking, kernel-based algorithms promote performance of co-training
approaches because relations of views are addressed. However, these al-
gorithms are unsatisfied because selecting appropriate kernels without
deeply understanding of properties of multi-view data is difficult.

However, these approaches directly manipulate data for clustering,
where the high-order relations among objects are ignored. To avoid this
problem, graph-based methods (Gao et al., 2021; Guo et al., 2024; Hou
et al., 2017; Huang et al., 2022; Wang et al., 2019) construct graph(s)
for various views, transforming the original problem into graph clus-
tering. Thus, clusters in multi-view data is equivalent to communities
in network(s). The great difference among these algorithms lies on
the construction and clustering of graph(s). For instance, GMC (Wang
et al., 2019) constructs an unified graph of various views with the
mutual reinforcement learning, where clusters are directly obtained
from the unified graph. CGDD (Huang et al., 2022) simultaneously
3 
and explicitly exploits consistency and cross-graph diversity of various
views, where noise of each view is effectively removed. Graph-based
algorithms dramatically improve performance of clustering of multi-
view data, demonstrating that topological structure of graphs of views
is critical for multi-view clustering.

Furthermore, subspace-based algorithms learns the low-dimensional
representation of objects by projecting all views into subspace(s), where
the key technique is to find appropriate subspace(s) (Guo, 2013). For
example, Convex (Guo, 2013) projects all views into a shared subspace
with convex optimization, whereas MVSC (Gao, Nie, Li, & Huang,
2015) performs subspace clustering by preserving the consistence of
clusters among different views. To further exploit hierarchical repre-
sentation of multi-view data, DNMF (Trigeorgis, Bousmalis, Zafeiriou,
& Schuller, 2016) learn deep features of objects to obtain the multi-level
representation, where hierarchical structure of features is investigated,
thereby providing a more comprehensive way to model multi-view
data. DMVC (Zhao, Ding, & Fu, 2017) utilizes deep features of objects
for clustering. awDMVC (Huang et al., 2020) automatically learns
weights for various views, whereas MVC-DMF-PA (Zhang et al., 2021)
employs alignment of partitioning of various views for clustering. In
addition, DANMF-MRL (Huang et al., 2023) explores consistency of
views with deep features of objects. Nevertheless, these algorithms only
concentrate on the identification of the shared features, ignoring view-
specific features, which is also encouraging for multi-view clustering.
For instance, DiMSC (Cao et al., 2015) quantifies diversity of features of
objects to obtain the complementary information with Hilbert–Schmidt
independence criterion, and FMR (Li, Zhang, Hu, Zhu & Wang, 2019)
explores diversity of features of various views.

Here, we investigate possibility of exploiting consistency and di-
versity of multi-level representation across views to fully characterize
multi-view data.

3. Preliminaries

In this study, letters denote variables, where uppercase, lowercase
boldface and lowercase letters represent matrices, vectors and scalars,
respectively. Matrix 𝑋 ∈ 𝑅𝑚×𝑛 is profile of 𝑛 objects with 𝑚 features,
where element 𝑥𝑖𝑗 denotes value of the 𝑖th feature of the 𝑗th object.
Multi-view data is denoted by  = {𝑋[1],… , 𝑋[𝜈]}, where 𝑋[𝑣] ∈ 𝑅𝑚𝑣×𝑛



Z. Dou et al.

a

l

t

s

a

e
s

l

t

Neural Networks 182 (2025) 106856 
is the profile of the 𝑣th view, and 𝜈 is the number of views. ‖𝑋‖ =
√

∑

𝑖𝑗 𝑥
2
𝑖𝑗 is the Frobenius norm of 𝑋, and 𝑋′ is the transpose of matrix

𝑋. Let 𝐱𝑖.(𝑋𝑖.) and 𝐱.𝑗 (𝑋.𝑗 ) be the 𝑖th row and 𝑗th column of matrix 𝑋. If
𝑋 is a square matrix, 𝑇 𝑟(𝑋) = ∑

𝑖 𝑥𝑖𝑖 is trace of 𝑋. Given feature matrix
𝑋, a graph 𝐺 = (𝑉 , 𝐸) is constructed (𝑉 and 𝐸 are the set of vertices
nd edges respectively), whose adjacent matrix is denoted by 𝑊 ∈ 𝑅𝑛×𝑛

with element 𝑤𝑖𝑗 as weight on edge connecting the 𝑖th and 𝑗th vertex.
Graph clustering divides vertex set into groups such that vertices within
the same groups are well connected, and weakly connected across
different clusters. The major notations are summarized in Table 1.

NMF (Lee & Seung, 1999) approximates data 𝑋 with two low-
dimensional and nonnegative matrices such that minimization of error
is achieved, i.e.,

min
𝐵 ,𝐹 ‖𝑋 − 𝐵 𝐹‖2, 𝑠.𝑡. 𝐵 ≥ 0, 𝐹 ≥ 0, (1)

where 𝐵 ∈ 𝑅𝑚×𝑘 and 𝐹 𝑘×𝑛 are the basis and coefficient matrix,
respectively. DNMF (Trigeorgis et al., 2016; Zhao, Wang, & Pei, 2019)
earns hierarchical representation of the original data 𝑋 as

min
𝐵[𝑖] ,𝐹

‖𝑋 − 𝐵[1]𝐵[2] ⋯𝐵[𝜏]𝐹‖2, 𝑠.𝑡. 𝐵[𝑖] ≥ 0, 𝐹 ≥ 0, (2)

where 𝐵[𝑖] and 𝐹 denote the 𝑖th basis and coefficient matrix, and 𝜏 is
the number of levels. Notice that 𝜏=1 implies that DNMF is degenerated
to NMF.

Self-representation learning (Elhamifar & Vidal, 2013) hypothesizes
hat objects can be represented with others with a linear function, i.e.,

𝐱𝑖 =
∑

𝑗 ,𝑗≠𝑖
𝜓𝑗𝐱𝑗 , (3)

where 𝜓𝑗 is the weight for the 𝑗th object. Graph can be learned from
elf-representation is as

min ‖𝑋 −𝑋 𝛹‖2, 𝑠.𝑡. 𝑑 𝑖𝑎𝑔(𝛹 ) = 0, (4)

where diagonal elements of 𝛹 are 0 to avoid trivial solutions.

4. The proposed algorithm

In this section, the model, optimization, and analysis of MVC-DMLR
re presented.

4.1. Objective function

The objective function of MVC-DMLR is composed of three major
components, where each of them corresponds to one of procedures,
i.e., deep feature learning, multi-level topology representation learning
and clustering as shown in Fig. 1.

On the deep feature learning issue, the most frequently employed
approach is to obtain low-dimensional features of objects with NMF
(Lee & Seung, 1999). Specifically, NMF approximates profile 𝑋[𝑣] of
ach view with low-rank nonnegative matrices by minimizing recon-
truction error, i.e.,

‖𝑋[𝑣] − 𝐵[𝑣]𝐹 [𝑣]
‖

2, 𝑠.𝑡. 𝐵[𝑣] ≥ 0, 𝐹 [𝑣] ≥ 0. (5)

To exploit relations of various views, features of objects can be obtained
by summing all views as
𝜈
∑

𝑣=1
‖𝑋[𝑣] − 𝐵[𝑣]𝐹 [𝑣]

‖

2. (6)

However, Eq. (6) fails to discriminate intrinsic complicated struc-
ture of features, since objects in multi-view data cannot be precisely
characterized with features from one level. Therefore, there is a critical
need for learning multi-level representation of objects, where each
level characterizes structure at various resolution, thereby enhancing
comprehensibility of features. DNMF (Trigeorgis et al., 2016) in Eq. (2)
earns multi-level representation of objects, where 𝐵[𝑖] ⋯𝐵[𝜏]𝐹 denotes
4 
the 𝑖th level representation (1 ≤ 𝑖 ≤ 𝜏). By jointly factorizing profiles
of views, Eq. (6) is reformulated as

𝐷 𝑁 𝑀 𝐹 =
𝜈
∑

𝑣=1
‖𝑋[𝑣] − 𝐵[𝑣,1] ⋯𝐵[𝑣,𝜏]𝐹 [𝑣,𝜏]

‖

2, (7)

where 𝐹 [𝑣,𝜏] feature of objects. In this case, hierarchical structure of fea-
ures is learned, which is more precise to model complicated structure

of multi-view data. In other words, feature 𝐹 [𝑣,𝑖] = 𝐵[𝑣,𝑖+1] ⋯𝐵[𝑣,𝜏]𝐹 [𝑣,𝜏]

describes the global structure if 𝑖 is small, local details otherwise.
Furthermore, multi-level representation also provides an opportunity
to investigate intrinsic and complicated structure of multi-view at
different resolutions, thereby improving the quality of features.

On multi-level topology representation learning issue, current al-
gorithms (Trigeorgis et al., 2016; Zhang et al., 2021) only makes
use of the last level feature 𝐹 [𝑣,𝜏] to perform clustering, whereas it
is insufficient to fully characterize multi-view data since it merely
describes details of data, ignoring meta-structure of objects. Moreover,
relations among various views is also lacking, and MVC-DMLR employs
self-representation learning to learn an affinity graph for each level as

‖𝐹 [𝑣,𝑖] − 𝐹 [𝑣,𝑖]𝑊 [𝑣,𝑖]
‖

2, 𝑠.𝑡. 𝑑 𝑖𝑎𝑔(𝑊 [𝑣,𝑖]) = 0, (8)

where constraint 𝑑 𝑖𝑎𝑔(𝑊 [𝑣,𝑖])=0 requires diagonal elements are 0 to
avoids trivial solutions, i.e., samples are expressed by themselves. By
summing all levels, Eq. (8) is re-written as
𝜏
∑

𝑖=1
‖𝐹 [𝑣,𝑖] − 𝐹 [𝑣,𝑖]𝑊 [𝑣,𝑖]

‖

2. (9)

By jointly learning all views, MVC-DMLR obtains multi-level topology
representation for multi-view data as

𝑆 𝑅 =
𝜈
∑

𝑣=1

𝜏
∑

𝑖=1
‖𝐹 [𝑣,𝑖] − 𝐹 [𝑣,𝑖]𝑊 [𝑣,𝑖]

‖

2. (10)

Eq. (10) results in consequent advantage that hierarchical structure is
explicitly learning, thereby facilitating the quantification of consistency
and diversity of various views.

However, directly clustering of the constructed graphs is impractical
because of two reasons. First, our previous studies (Huang, Wang, &
Ma, 2021; Ma, Dong, & Wang, 2018; Zhang & Ma, 2022) demon-
strate that it is complicated to directly exploit structure of multi-layer
networks. Second, diversity and consistency of various graphs are
ignored, hampering the identification of clusters. To address this prob-
lem, MVC-DMLR automatically separates 𝑊 [𝑣,𝑖] into the conserved
and level-specific parts, where the former part reflects consistency of
all levels, and the latter one characterizes diversity of each view. In
details, MVC-DMLR decomposes 𝑊 [𝑣,𝑖] into the conserved part 𝐶 [𝑣] and
level-specific part 𝑈 [𝑣,𝑖] such that

𝑊 [𝑣,𝑖] = 𝐶 [𝑣] + 𝑈 [𝑣,𝑖]. (11)

By substituting the above expression into Eq. (10), we reformulate it as

𝑆 𝑅 =
∑

𝑣,𝑖
‖𝐹 [𝑣,𝑖] − 𝐹 [𝑣,𝑖](𝐶 [𝑣] + 𝑈 [𝑣,𝑖])‖2. (12)

Furthermore, 𝑙2 norm (Chellaboina & Haddad, 1995) is imposed onto
level-specific part as

𝑅𝐸 𝐺 =
∑

𝑣,𝑖
‖𝑈 [𝑣,𝑖]

‖

2. (13)

The relations among consistency 𝐶 and diversity 𝑈 are further
addressed, where orthogonality (Wang et al., 2017) is employ to ensure
separation of them as

𝐶 [𝑣](𝑈 [𝑣,𝑖])′ = 𝐼 , (14)

where 𝐼 is the identity matrix. And, it can be formulated as trace
minimization, i.e.,
𝑇 𝑟(𝐶 [𝑣](𝑈 [𝑣,𝑖])′). (15)
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Furthermore, we also expect diversity across various views is also
addressed with orthogonality as
𝐷 𝐼 𝑉 =

∑

𝑣𝑝≠𝑣𝑞

𝑇 𝑟(𝐶 [𝑣𝑝](𝐶 [𝑣𝑞 ])′) +
∑

𝑣,𝑖
𝑇 𝑟(𝐶 [𝑣](𝑈 [𝑣,𝑖])′)

+
∑

𝑣

∑

𝑖𝑗≠𝑖𝑘

𝑇 𝑟(𝑈 [𝑣,𝑖𝑗 ](𝑈 [𝑣,𝑖𝑘])′)
(16)

By combining Eqs. (7), (12), (13), and (16), the objective function
of MVC-DMLR is finalized as

 = 𝐷 𝑁 𝑀 𝐹 + 𝑆 𝑅 + 𝜆𝑅𝐸 𝐺 + 𝛾𝐷 𝐼 𝑉 (17)

=
𝜈
∑

𝑣=1
‖𝑋[𝑣] − 𝐵[𝑣,1] ⋯𝐵[𝑣,𝜏]𝐹 [𝑣,𝜏]

‖

2

+
∑

𝑣,𝑖
‖𝐹 [𝑣,𝑖] − 𝐹 [𝑣,𝑖](𝐶 [𝑣] + 𝑈 [𝑣,𝑖])‖2 + 𝜆

∑

𝑣,𝑖
‖𝑈 [𝑣,𝑖]

‖

2

+ 𝛾
∑

𝑣𝑝≠𝑣𝑞

𝑇 𝑟(𝐶 [𝑣𝑝](𝐶 [𝑣𝑞 ])′) + 𝛾
∑

𝑣,𝑖
𝑇 𝑟(𝐶 [𝑣](𝑈 [𝑣,𝑖])′)

+ 𝛾
∑

𝑣

∑

𝑖𝑗≠𝑖𝑘

𝑇 𝑟(𝑈 [𝑣,𝑖𝑗 ](𝑈𝑣,𝑖𝑘 )′)

𝑠.𝑡. 𝐵[𝑣,𝑖] ≥ 0, 𝐹 [𝑣,𝑖] ≥ 0, 𝐶 [𝑣] ≥ 0, 𝑈 [𝑢,𝑖] ≥ 0,

𝑑 𝑖𝑎𝑔(𝐶 [𝑣]) = 0, 𝑑 𝑖𝑎𝑔(𝑈 [𝑣,𝑖]) = 0
where parameter 𝜆 and 𝛾 control importance of diversity and its rela-
tions with consistency, respectively.

On clustering of multi-view data issue, MVC-DMLR constructs an
affinity graph from various views as

𝑊 = 1
𝜈
∑

𝑣

𝐶 [𝑣] + (𝐶 [𝑣])′

2
+ 1
𝜈 𝜏

∑

𝑣,𝑖

𝑈 [𝑣,𝑖] + (𝑈 [𝑣,𝑖])′

2
. (18)

And, we subsequently employ spectral clustering to obtain clusters with
affinity graph 𝑊 .

4.2. Optimization

We adopt ADMM (Lin, Liu, & Su, 2011) to optimize Eq. (17), which
lternatively updates a variable by fixing others.
Optimization of 𝐵[𝑣,𝑖]: By removing irrelative items, the objective

unction in terms of 𝐵[𝑣,𝑖] is reformulated as

 = ‖𝐹 [𝑣,𝑖−1] − 𝐵[𝑣,𝑖]𝐹 [𝑣,𝑖]
‖

2 𝑠.𝑡. 𝐵[𝑣,𝑖] ≥ 0, (19)

where

𝐹 [𝑣,𝑖−1] =

{

𝑋[𝑣], if 𝑖 = 1,
𝐹 [𝑣,𝑖−1], otherwise.

(20)

And, Eq. (19) is standard NMF, which can be effectively solved with
he adding and multiplication strategy as (Lee & Seung, 2000)

𝐵[𝑣,𝑖] = 𝐵[𝑣,𝑖] ⊙
𝐹 [𝑣,𝑖−1](𝐹 [𝑣,𝑖])′

𝐵[𝑣,𝑖]𝐹 [𝑣,𝑖](𝐹 [𝑣,𝑖])′
, (21)

where ⊙ denotes the Hadamard product.
Optimization of 𝐹 [𝑣,𝑖]: Eq. (17) is equivalent with the following

problem

 = ‖𝐹 [𝑣,𝑖−1] − 𝐵[𝑣,𝑖]𝐹 [𝑣,𝑖]
‖

2 𝑠.𝑡. 𝐹 [𝑣,𝑖] ≥ 0 (22)

where

𝐹 [𝑣,𝑖−1] =

{

𝑋[𝑣], 𝑖=1,
𝐹 [𝑣,𝑖−1], otherwise.

(23)

Notice that Eq. (22) is convex, where the analytical solution exists. the
artial derivative of  in terms of 𝐹 [𝑣,𝑖] is formulated as
𝜕

𝜕 𝐹 [𝑣,𝑖] = (𝐵[𝑣,𝑖])′(𝐹 [𝑣,𝑖−1] − 𝐵[𝑣,𝑖]𝐹 [𝑣,𝑖]) (24)

By setting partial derivative 𝜕 𝐿
𝜕 𝐹 [𝑣,𝑖] =0, the update rule is obtained as

𝐹 [𝑣,𝑖] = 𝐹 [𝑣,𝑖] ⊙
(𝐵[𝑣,𝑖])′𝐹 [𝑣,𝑖−1]

(𝐵[𝑣,𝑖])′𝐵[𝑣,𝑖]𝐹 [𝑣,𝑖] . (25)
5 
Optimization of 𝐶 [𝑣]: By removing irrelevant item for 𝐶 [𝑣], objective
function is transformed into
 =

∑

𝑣,𝑖
‖𝐹 [𝑣,𝑖] − 𝐹 [𝑣,𝑖](𝐶 [𝑣] + 𝑈 [𝑣,𝑖])‖2

+𝛾
∑

𝑣𝑝≠𝑣𝑞

𝑇 𝑟(𝐶 [𝑣𝑝](𝐶 [𝑣𝑞 ])′) + 𝛾
∑

𝑣,𝑖
𝑇 𝑟(𝐶 [𝑣](𝑈 [𝑣,𝑖])′)

𝑠.𝑡. 𝑑 𝑖𝑎𝑔(𝐶 [𝑣]) = 0, 𝐶 [𝑣] ≥ 0.

(26)

The partial derivative of Eq. (26) in terms of 𝐶 [𝑣] is deduced as
𝜕
𝜕 𝐶 [𝑣] =

∑

𝑖
(𝐹 [𝑣,𝑖])′𝐹 [𝑣,𝑖]𝐶 [𝑣] −

∑

𝑖
(𝐹 [𝑣,𝑖])′𝐹 [𝑣,𝑖]

+
∑

𝑖
(𝐹 [𝑣,𝑖])′𝐹 [𝑣,𝑖]𝑈 [𝑣,𝑖] + 𝛾(

∑

𝑣𝑝≠𝑣
𝐶 [𝑣𝑝] +

∑

𝑖
𝑈 [𝑣,𝑖]).

(27)

By setting 𝜕
𝜕 𝐶[𝑣] =0, the update rule for 𝐶 [𝑣] is obtained as

𝐶 [𝑣] = 𝐶 [𝑣] ⊙
∑

𝑖(𝐹 [𝑣,𝑖])′𝐹 [𝑣,𝑖]

𝜙(𝐹 [𝑣,𝑖], 𝐶 [𝑣], 𝑈 [𝑣,𝑖])
, (28)

where 𝜙(𝐹 [𝑣,𝑖], 𝐶 [𝑣], 𝑈 [𝑣,𝑖]) = ∑

𝑖(𝐹 [𝑣,𝑖])′𝐹 [𝑣,𝑖](𝐶 [𝑣]+𝑈 [𝑣,𝑖]) +𝛾(∑𝑣𝑝≠𝑣 𝐶
[𝑣𝑝]+

∑

𝑖 𝑈
[𝑣,𝑖]).

Optimization of 𝑈 [𝑣,𝑖]: Eq. (17) in terms of 𝑈 [𝑣,𝑖] is equivalent with
he following problem
 =

∑

𝑣,𝑖
‖𝐹 [𝑣,𝑖] − 𝐹 [𝑣,𝑖](𝐶 [𝑣] + 𝑈 [𝑣,𝑖])‖2 + 𝜆

∑

𝑣,𝑖
‖𝑈 [𝑣,𝑖]

‖

2

+ 𝛾
∑

𝑣

∑

𝑖𝑗≠𝑖𝑘

𝑇 𝑟(𝑈 [𝑣,𝑖𝑗 ](𝑈𝑣,𝑖𝑘 )′) + 𝛾
∑

𝑣,𝑖
𝑡𝑟((𝐶 [𝑣])′𝑈 [𝑣,𝑖])

𝑠.𝑡. 𝑑 𝑖𝑎𝑔(𝑈 [𝑣,𝑖]) = 0, 𝑈 [𝑣,𝑖] ≥ 0.

(29)

And, the partial derivative of  in terms of 𝑈 [𝑣,𝑖] is deduced as
𝜕

𝜕 𝑈 [𝑣,𝑖] = (𝐹 [𝑣,𝑖])′𝐹 [𝑣,𝑖]𝑈 [𝑣,𝑖] − (𝐹 [𝑣,𝑖])′𝐹 [𝑣,𝑖]

+ (𝐹 [𝑣,𝑖])′𝐹 [𝑣,𝑖]𝐶 [𝑣] + 𝜆𝑈 [𝑣,𝑖]

+ 𝛾
∑

𝑖𝑗≠𝑖
𝑈 [𝑣,𝑖𝑗 ] + 𝛾 𝐶 [𝑣].

(30)

By setting the partial derivative 𝜕
𝜕 𝑈 [𝑣,𝑖] as 0, the update rule for 𝑈 [𝑣,𝑖] is

ormulated as

𝑈 [𝑣,𝑖] = 𝑈 [𝑣,𝑖] ⊙
(𝐹 [𝑣,𝑖])′𝐹 [𝑣,𝑖]

𝜑(𝐹 [𝑣,𝑖], 𝐶 [𝑣], 𝑈 [𝑣,𝑖])
, (31)

where 𝜑(𝐹 [𝑣,𝑖], 𝐶 [𝑣], 𝑈 [𝑣,𝑖]) = (𝐹 [𝑣,𝑖])′𝐹 [𝑣,𝑖](𝐶 [𝑣] + 𝑈 [𝑣,𝑖]) + 𝜆𝑈 [𝑣,𝑖] +
(
∑

𝑖𝑗≠𝑖 𝑈
[𝑣,𝑖𝑗 ] + 𝐶 [𝑣]) (see Li, Chen, and Wang (2019)) .

Algorithm 1 MVC-DMLR Algorithm
Input:

 ∶ Multi-view data;
𝜆, 𝛾 ∶ Regularization parameters;

Output:
Clusters of  ;

Part I: Deep feature learning
1. Initialize matrix 𝐵[𝑣,𝑖] and 𝐹 [𝑣,𝑖] with Singular Value decomposition
as Li, Chen, and Wang (2019);
2. Update matrix 𝐵[𝑣,𝑖] according to Eq. (21);
3. Update matrix 𝐹 [𝑣,𝑖] according to Eq. (25);
Part II: Multi-level topology representation
4. Update matrix 𝐶 [𝑣] according to Eq. (28);
5. Update matrix 𝑈 [𝑣,𝑖] according to Eq. (31);
6. Go to step 2 until convergence;
Part III: Clustering
7. Construct the affinity matrix 𝑊 as Eq. (18).
8. Clustering 𝑊 using spectral clustering.
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Table 2
Statistics of multi-view data, where 𝑛, 𝜈 and 𝑚𝑣 denote the number of objects,
views, and attributes, respectively.

𝑛 𝜈 𝑚𝑣
BBC 685 4 4659/4633/4665/4684
BBCSport 544 2 3183/3203
3sources 169 3 3560/3631/3068
Reuters 1200 5 2000/2000/2000/2000/2000
CiteSeer 3312 2 3312/3703
WebKB 203 3 1703/230/230
NGS 500 3 2000/2000/2000
ORL 400 3 4096/3304/6750
Yale 165 3 4096/3304/6750
100leaves 1600 3 64/64/64

4.3. Algorithm analysis

On the space complexity of MVC-DMLR, it needs space 𝑂(𝑛∑𝑣 𝑚𝑣)
to store {𝑋(𝑣)}𝜏𝑣=1. For the deep feature learning, space for the ba-
sis and coefficient matrices is 𝑂(𝑛

∑

𝑣 𝑚𝑣) since NMF is dimension
reduction-based method. Moreover, MVC-DMLR takes space 𝑂(𝑛2𝜏) to
tore graphs, and space for graphs in Eq. (18) is 𝑂(𝑛2). Therefore, the

total space complexity of MVC-DMLR is 𝑂(𝑛2𝜏).
On the time complexity of MVC-DMLR, it updates matrix 𝐵[𝑣,𝑖],

𝐹 [𝑣,𝑖], 𝐶 [𝑣] and 𝑈 [𝑣,𝑖]. And, time for updating matrices is 𝑂(𝑛2𝑙 𝑘), where
is the number of iterations, and 𝑘 is the number of features. Thus,

he time complexity of MVC-DMLR is 𝑂(𝑙 𝑘𝑛2𝜈 𝜏). Even though time
complexity of MVC-DMLR is higher than that of NMF, we demonstrate
that MVC-DMLR is also efficient (Section 5.4).

5. Experimental results

Extensive experiments are conducted to testify effectiveness of
MVC-DMLR with seven state-of-the-art baselines and ten benchmark
datasets.

5.1. Data

Ten datasets are chosen for experiments, which are depicted as

- BBC (Greene & Cunningham, 2006) involves 685 documents
from BBC news, and each of them with 4 views. The number of
attributes of views are 4659, 4633, 4665 and 4684, respectively.

- BBCSport (Greene & Cunningham, 2006) involves 544 docu-
ments from BBC Sport column, and each document is depicted
into two views with 3183 and 3203 attributes, respectively.

- 3Sources consists of 169 news from 3 news organizations, where
samples are manually labeled as one of seven topical labels.

- Reuters (Bisson & Grimal, 2012) contains 1200 documents,
and each document is written by using five languages, such
as English, Italian, French, German, and Spanish, where each
language has 2000 words as features.

- CiteSeer (Bisson & Grimal, 2012) contains 3312 documents
over 6 labels, and each one is associated with the content and
citations view, where the content view has 3703 words, and
citation view includes 4732 links, respectively.

- WebKB is composed of 203 web pages, which is gathered from
the computer science department of University of California.
Each sample is depicted by the materials, recording the anchor
text on the hyperlink, and titles as attributes.

- 20NGs is a collection of news documents drawn from 20 distinct
newsgroups, each of which has 500 instances that are processed
by 3 various approaches.

- ORL is from the Olivetti Research Laboratory in Cambridge,
which consists of 40 distinct objects, and each of them is with
10 diverse images. Three different attributes are used to depicted
an image including 4096 intensity, 3304 LBP, and 6750 Cabor,
respectively.
6 
- Yale (Cai, He, Hu, Han, & Huang, 2007) consists of 165 raw
images belonging to 15 subjects, and there are 11 images under
various environments for each subject. For each image, three
types of features are generated.

- 100leaves consists of 1600 samples from 100 plant species,
where features include shape descriptor, fine-scale margin, and
texture histogram.

All these datasets can be categorized into two classes, i.e., texts and
images, where BBC, BBCSport, 3Sources, Reuters, CiteSeer, WebKB, and
20NGs belong to the first class, and ORL, Yale, and 100leaves are the
second one. The statistics of these datasets are summarized in Table 2.

5.2. Baselines and metrics

Seven state-of-the-art baselines are chosen for a comparison to
fully validate performance of the proposed algorithm, including as Co-
Reg (Kumar et al., 2011), MultiNMF (Liu, Wang, Gao, & Han, 2013),

MVC (Zhao et al., 2017), CSMSC (Luo et al., 2018), GMC (Wang et al.,
2019), MVC-DMF-PA (Zhang et al., 2021), and CGDD (Huang et al.,
2022), which cover all typical multi-view clustering approaches. All
these algorithms are executed on HP Z228 workstation with Intel i5
CPU, 64G memory and 1Tb RAM with the optimal values of parameters.
MVC-DMLR is coded with python.

To evaluate the clustering performance, four popular metrics, such
s accuracy (ACC), normalized mutual information (NMI) (Danon, Diaz-

Guilera, Duch, & Arenas, 2005), F-score, and adjusted rand index
ARI) (Hubert & Arabie, 1985), are selected as evaluation criteria. Each
lgorithm is executed 50 time, and the mean of accuracy is selected to

measure performance of algorithms. ACC is defined as

𝐴𝐶 𝐶 = 1
𝑛

𝑛
∑

𝑖=1
𝛿(𝑝𝑖, 𝑔𝑖), (32)

where 𝑝𝑖 and 𝑔𝑖 denote the predicted and truth label of the 𝑖th object
espectively, and 𝛿(𝑝𝑖, 𝑔𝑖) is an indicator function that is 1 if 𝑝𝑖 = 𝑔𝑖, 0
therwise.

Let 𝐶∗ and 𝐶 be the ground truth and predicted clusters, NMI
Danon et al., 2005) constructs a confusion matrix 𝑃 with the element
𝑝𝑖𝑗 as the number of vertices overlapped by the 𝑖th true cluster in 𝐶∗

and the 𝑗th predicted one, which is defined as

NMI(𝐶 , 𝐶∗) =
−2

∑

|𝐶|
𝑖=1

∑
|𝐶∗

|

𝑗=1 𝑝𝑖𝑗 log
(

𝑝𝑖𝑗𝑃
𝑃𝑖.𝑃.𝑗

)

∑

|𝐶|
𝑖=1 𝑃𝑖. log

(

𝑃𝑖.
𝑃

)

+
∑

|𝐶∗
|

𝑗=1 𝑃.𝑗 log
( 𝑃𝑗 ,𝑗

𝑃

) .

ARI (Hubert & Arabie, 1985) is defined as

𝐴𝑅𝐼 =

∑

𝑖𝑗
(𝑝𝑖𝑗
2

)

−
[

∑

𝑖
(𝑝𝑖.
2

)
∑

𝑗
(𝑝.𝑗
2

)

]

∕
(𝑛
2

)

1
2

[

∑

𝑖
(𝑝𝑖.
2

)

+
∑

𝑗
(𝑝.𝑗
2

)

]

−
[

∑

𝑖
(𝑝𝑖.
2

)
∑

𝑗
(𝑝.𝑗
2

)

]

∕
(𝑛
2

)

, (33)

where 𝑝𝑖. and 𝑝.𝑗 is the sum of the 𝑖th row and 𝑗-column, respectively.
F-score is variant of mean of precision and recall as

F−scor e = 2 × 𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐 𝑎𝑙 𝑙
𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐 𝑎𝑙 𝑙 . (34)

5.3. Parameter analysis

Two parameters 𝜆 and 𝛾 are involved in MVC-DMLR, where pa-
rameter 𝜆 and 𝛾 determine importance of diversity and consistency of
features, respectively. Parameter effect is analyzed by fixing the others
on six datasets.

How ACC of MVC-DMLR alters by varying values of parameters
s displayed in Fig. 2, where panel A is for parameter 𝜆, and B for
𝛾, respectively. Fig. 2A depicts how ACC of MVC-DMLR changes as
parameter 𝜆 ranges from 10−4 to 102 on various datasets. We can draw
conclusions naturally that ACC significantly improves as 𝜆 increases
from 10−4 to 1. Furthermore, ACC of MVC-DMLR is quite steady when
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Fig. 2. ACC of MVC-DMLR vs various parameters: (A) log of 𝜆, and (B) log of 𝛾.
Table 3
Performance of various algorithms on the multi-view image data in terms of ACC, NMI, F-Score, and ARI (mean ± sd), where
the best performance are shown in bold font, and - represents no output.

Data Methods ACC(%) NMI(%) F-Score(%) ARI(%)

ORL

Co-Reg 73.80 ± 3.60 88.04 ± 1.30 64.78 ± 5.26 63.90 ± 5.39
MultiNMF 72.00 ± 3.40 88.70 ± 1.09 65.38 ± 3.94 64.46 ± 4.08
DMVC 76.09 ± 1.36 87.44 ± 0.47 67.55 ± 1.38 66.76 ± 1.42
CSMSC 77.63 ± 2.65 90.40 ± 0.98 71.99 ± 2.52 71.28 ± 2.59
GMC 63.25 ± 0.00 85.71 ± 0.00 35.99 ± 0.00 33.67 ± 0.00
MVC-DMF-PA 71.27 ± 3.66 85.81 ± 1.80 62.85 ± 4.30 63.76 ± 4.18
CGDD 62.20 ± 1.33 84.66 ± 0.80 35.11 ± 2.91 32.76 ± 3.07
MVC-DMLR 81.81 ± 2.57 92.49 ± 0.84 76.91 ± 2.49 76.34 ± 2.55

Yale

Co-Reg 58.09 ± 4.20 63.06 ± 2.45 43.78 ± 2.26 39.93 ± 2.43
MultiNMF 56.95 ± 2.89 63.70 ± 1.50 45.06 ± 2.26 41.20 ± 2.50
DMVC 78.20 ± 1.00 74.50 ± 1.10 60.10 ± 0.20 57.90 ± 0.20
CSMSC 64.46 ± 2.80 68.85 ± 1.62 51.72 ± 2.13 48.39 ± 2.31
GMC 65.45 ± 0.00 68.92 ± 0.00 48.01 ± 0.00 44.10 ± 0.00
MVC-DMF-PA 60.08 ± 5.90 64.52 ± 4.66 43.59 ± 6.44 47.24 ± 5.97
CGDD 66.55 ± 0.27 70.35 ± 1.06 49.53 ± 1.48 45.88 ± 1.60
MVC-DMLR 73.16 ± 1.09 75.11 ± 0.88 60.58 ± 1.18 57.96 ± 1.25

100leaves

Co-Reg 71.89 ± 1.77 88.16 ± 0.75 61.88 ± 8.06 61.49 ± 8.14
MultiNMF 66.95 ± 1.86 85.69 ± 0.56 58.52 ± 1.83 58.08 ± 1.86
DMVC 25.99 ± 0.44 56.56 ± 0.25 11.87 ± 0.29 10.96 ± 0.30
CSMSC 75.74 ± 1.43 89.11 ± 0.48 68.41 ± 1.30 68.09 ± 1.31
GMC 82.38 ± 0.00 92.92 ± 0.00 50.42 ± 0.00 49.74 ± 0.00
MVC-DMF-PA – – – –
CGDD 80.34 ± 0.96 92.08 ± 0.75 46.63 ± 10.37 45.88 ± 10.57
MVC-DMLR 83.38 ± 1.68 92.98 ± 0.52 77.87 ± 1.66 77.65 ± 1.68
𝜆 > 1. When 𝜆 is small, diversity is subtle in the objective function,
ailing to balance diversity and consistency, which enforces MVC-DMLR
o maximize consistency of various views. In this case, MVC-DMLR fails
o separate diversity from consistency of each view, thereby reducing
uality of features of objects. As parameter 𝜆 increases from 1 to
02, ACC of MVC-DMLR significantly improves because diversity and
onsistency reach a good balance.

Moreover, Fig. 2B tracks how ACC of MVC-DMLR alters as param-
eter 𝛾 ranges from 10−4 to 102 on various datasets. Performance of
MVC-DMLR improves as parameter 𝜆 increases from 10−4 to 10−2, and
keeps stable as 𝜆 ∈ [10−2, 1]. However, performance of MVC-DMLR
ecreases ACC if 𝛾 >1. When parameter 𝛾 is small, contribution of
elations between diversity and consistency of various views is subtle,
nd MVC-DMLR is devoted to learn features of objects for each views,
eviating from the conserved features of various views. When 𝛾 is
arge, objective function is dominated by relations between diversity
nd consistency, reducing importance of multi-level representation of
bjects. MVC-DMLR achieves the best performance when 𝛾 ∈ [0.01, 1].

Finally, it is natural to ask how many levels is a good choice,
i.e., how to select value for parameter 𝜏 for multi-level representation.
How ACC of MVC-DMLR changes by increases parameter 𝜏 from 1 to
5 is shown in Fig. 3. ACC of MVC-DMLR increases as parameter 𝜏
increases from 1 to 3, while it decreases as 𝜏 keeps increasing. When
arameter 𝜏 is small, multi-level representation cannot fully charac-
erize and model intrinsic structure of multi-view data. Furthermore,
arge value of parameter 𝜏 results in over-fitting, thereby reducing
7 
Fig. 3. Performance of MVC-DMLR with various values of parameter 𝜏.

performance of MVC-DMLR. And, the proposed algorithm reaches a
good tradeoff as 𝜏=3. By replacing ACC with NMI and ARI, we have
the similar tendency for each parameter, which are missed to remove
redundancy. Therefore, we set 𝜆=1, 𝛾=0.1, 𝜏=3 for all experiments.
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Fig. 4. Convergence analysis of MVC-DMLR on various datasets: (A) BBC, (B) Yale, (C) ORL, and (D) 3Sources, respectively.
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Table 4
Performance of variants of MVC-DMRL on various datasets in terms of ACC.

Data 𝜆=0 𝛾=0 MVC-DMLR

BBC 83.18 ± 0.08 75.13 ± 0.07 91.82 ± 0.00
BBCSport 79.60 ± 0.00 77.38 ± 0.05 92.31 ± 0.07
ORL 55.53 ± 1.60 75.83 ± 1.69 82.14 ± 2.75
Yale 64.07 ± 2.18 66.51 ± 1.11 72.61 ± 0.75
Reuters 46.97 ± 0.23 27.61 ± 0.26 57.25 ± 0.00
webkb 50.25 ± 0.00 66.02 ± 0.75 75.37 ± 0.00
NGs 76.25 ± 0.13 93.22 ± 0.06 98.40 ± 0.00

5.4. Convergence analysis

MVC-DMLR adopts ADMM to optimize objective function, where
convergence is ensured (Lin et al., 2011). Here, by using the relative
error of objective function, we investigate convergence of the sug-
gested approach, i.e., (𝑖-𝑚𝑖𝑛)/(𝑚𝑎𝑥-𝑚𝑖𝑛), where 𝑚𝑖𝑛, 𝑚𝑎𝑥, and
𝑚𝑖𝑛 denotes the 𝑖th iteration, maximal and minimal value of objective

unction, respectively.
Fig. 4 depicts convergence of MVC-DMLR relative error of objective

function and the number of iterations for all datasets, where panel A
is for BBC, B for Yale, C for ORL, and D for 3Source, respectively.
Notice that the tendency is similar in other datasets, which is absent
for removing redundancy. From these panels, it is easy to assert that
MVC-DMLR only takes about 50 iterations to converge, whereas Multi-

MF requires more than 300 iterations to converge, implying that
he suggested approach is efficient. Three reasons explain why the
roposed algorithm converges quickly. First, MVC-DMLR takes DNMF
o learn multi-level representation of objects, i.e., in essence dimension
eduction is performed for each level, which dramatically reduces com-
lexity of the proposed algorithm. Second, MVC-DMLR joins feature
earning, graph learning and clustering of multi-view data, where the
opological structure serves as partial information to accelerate speed of
onvergence (Huang et al., 2021; Ma et al., 2018; Zhang & Ma, 2022).

Third, MVC-DMLR simultaneously measures relations consistency and
iversity of various views with orthogonality, enforcing sparsity of
iversity of various views, which also accelerates speed of the proposed
lgorithm.
8 
5.5. Performance of multi-view clustering

To validate performance of MVC-DMLR, seven state-of-the-art al-
orithms, such as Co-Reg (Kumar et al., 2011), MultiNMF (Liu et al.,

2013), DMVC (Zhao et al., 2017), CSMSC (Luo et al., 2018), GMC (Wang
et al., 2019), MVC-DMF-PA (Zhang et al., 2021), and CGDD (Huang
et al., 2022), are chosen as baselines. Furthermore, ten benchmark
multi-view data are selected for experiments, which are divided into
two classes, i.e., image and text, as shown in Table 2. To remove bias of
measurements, four indexes, including ACC, ARI, NMI and F-score, are
employed to quantify performance of various algorithms. To remove
randomness of algorithms, each methods are executed 50 time and
mean ± standard deviation is chosen as performance.

Performance of various algorithms for clustering of multi-view im-
age data, such as ORL, Yale and 100leaves, is shown in Table 3, where
the proposed algorithm achieves the best performance. Specifically,
ACC of MVC-DMLR is 81.81% for ORL, 73.16% for Yale, and 83.38%
for 100leaves, whereas that of CGDD is 62.20%, 66.55%, and 80.34%,
respectively. CSMSC and GMC are inferior to MVC-DMLR, but are
uperior to others. These results demonstrate that topological structure
f graphs facilitates the identification of clusters. Furthermore, ACC
f DMVC is 76.09% for ORL, whereas it is 25.99% for 100leaves,
ndicating that DMVC is very sensitive to datasets. The reason is that
MVC solely learns the multi-level representation of objects, which is

nsufficient to characterize the intrinsic structure of multi-view data. By
eplacing ACC with ARI, NMI and F-score, MVC-DMLR still achieves the
est performance, demonstrating that the proposed algorithm is not co-
actored by measurements. However, CGDD and GMC are very sensitive
o measurements. For example, ACC of GMC and CGDD is 63.25% and
2.20% for ORL, whereas ARI is 33.67% and 32.76%, respectively. This
endency repeats in other datasets, showing these algorithms fail to
dentify the truth clusters in multi-view data. These results demonstrate
hat MVC-DMLR is promising for clustering of multi-view datasets for
mages.

Then, we apply these algorithms to multi-view data for documents,
and performance of them with various measurements is shown in
Table 5. Notice that even though MVC-DMLR is inferior to CGDD
and GMC in terms ACC and NMI on WebKB, but it achieves the best
performance for other datasets. Performance of MVC-DMLR is still
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Table 5
Performance of various algorithms in terms of various measurements, where the best performance are shown in bold
font (mean ± sd).

Data Methods ACC(%) NMI(%) F-Score(%) ARI(%)

BBC

Co-Reg 42.98 ± 4.70 15.86 ± 7.36 40.63 ± 2.13 8.41 ± 4.45
MultiNMF 45.57 ± 0.35 24.86 ± 0.15 37.22 ± 0.24 11.43 ± 0.21
DMVC 37.50 ± 0.25 11.73 ± 0.10 28.64 ± 0.03 7.70 ± 0.07
CSMSC 91.81 ± 0.04 77.29 ± 0.03 85.52 ± 0.08 81.05 ± 0.11
GMC 69.34 ± 0.00 56.28 ± 0.00 63.33 ± 0.00 47.89 ± 0.00
MVC-DMF-PA 75.84 ± 7.85 59.98 ± 2.06 58.78 ± 6.20 67.94 ± 4.92
CGDD 88.06 ± 0.07 75.47 ± 0.14 82.67 ± 0.16 76.81 ± 0.22
MVC-DMLR 91.82 ± 0.00 77.18 ± 0.00 86.00 ± 0.00 81.74 ± 0.00

BBCSport

Co-Reg 36.27 ± 2.75 13.93 ± 0.45 32.98 ± 0.59 11.66 ± 0.81
MultiNMF 46.63 ± 0.86 33.10 ± 1.83 40.18 ± 1.45 19.14 ± 2.84
DMVC 33.49 ± 0.26 6.12 ± 0.02 26.77 ± 0.04 3.73 ± 0.01
CSMSC 84.93 ± 0.00 73.57 ± 0.00 79.10 ± 0.00 72.87 ± 0.00
GMC 80.70 ± 0.00 76.00 ± 0.00 79.43 ± 0.00 72.18 ± 0.00
MVC-DMF-PA 68.54 ± 4.49 49.48 ± 3.45 46.25 ± 4.07 58.06 ± 3.19
CGDD 79.96 ± 0.64 73.12 ± 1.79 74.00 ± 1.40 64.01 ± 2.01
MVC-DMLR 92.29 ± 0.04 80.66 ± 0.16 86.58 ± 0.07 82.57 ± 0.09

3sources

Co-Reg 57.51 ± 3.53 50.65 ± 3.30 47.17 ± 3.42 32.16 ± 4.99
MultiNMF 50.22 ± 2.12 45.68 ± 1.01 45.66 ± 2.55 30.37 ± 3.22
DMVC 41.51 ± 0.30 24.69 ± 0.14 32.28 ± 0.17 14.90 ± 0.20
CSMSC 63.43 ± 1.02 47.28 ± 1.77 63.02 ± 0.69 50.69 ± 0.95
GMC 69.23 ± 0.00 62.16 ± 0.00 60.47 ± 0.00 44.31 ± 0.00
MVC-DMF-PA 54.89 ± 4.46 56.86 ± 3.68 41.73 ± 4.76 53.49 ± 3.65
CGDD 76.21 ± 0.26 68.74 ± 0.95 67.68 ± 0.63 55.31 ± 0.90
MVC-DMLR 79.88 ± 0.00 74.17 ± 0.00 76.51 ± 0.00 69.37 ± 0.00

Reuters

Co-Reg 45.78 ± 1.03 27.17 ± 0.79 34.61 ± 0.10 20.12 ± 0.27
MultiNMF 20.74 ± 1.85 9.37 ± 1.12 28.34 ± 0.07 0.55 ± 0.68
DMVC 27.57 ± 0.31 12.76 ± 0.16 28.72 ± 0.06 5.95 ± 0.09
CSMSC 44.51 ± 0.06 23.59 ± 0.04 32.41 ± 0.03 16.84 ± 0.05
GMC 19.92 ± 0.00 13.51 ± 0.00 28.76 ± 0.00 1.33 ± 0.00
MVC-DMF-PA 49.85 ± 1.90 30.28 ± 1.45 23.40 ± 1.56 37.71 ± 0.95
CGDD 23.70 ± 0.05 20.22 ± 0.36 29.29 ± 0.07 3.03 ± 0.13
MVC-DMLR 57.25 ± 0.00 38.14 ± 0.00 43.39 ± 0.00 30.85 ± 0.00

CiteSeer

Co-Reg 40.42 ± 1.01 18.76 ± 0.35 32.64 ± 2.21 15.05 ± 7.84
MultiNMF 22.34 ± 0.00 2.90 ± 0.03 30.20 ± 0.00 0.12 ± 0.00
DMVC 20.92 ± 0.00 2.20 ± 0.00 30.03 ± 0.00 −0.14 ± 0.00
CSMSC 59.45 ± 0.03 31.33 ± 0.03 43.13 ± 0.03 31.06 ± 0.04
GMC 21.44 ± 0.00 1.41 ± 0.00 30.31 ± 0.00 0.11 ± 0.00
MVC-DMF-PA 26.87 ± 1.59 7.33 ± 1.38 0.99 ± 1.55 29.28 ± 0.43
CGDD 21.04 ± 0.00 2.34 ± 0.00 30.16 ± 0.00 −0.03 ± 0.00
MVC-DMLR 59.69 ± 0.01 32.15 ± 0.01 43.56 ± 0.00 31.31 ± 0.01

WebKB

Co-Reg 63.30 ± 1.63 33.31 ± 2.41 57.80 ± 1.72 36.03 ± 2.26
MultiNMF 74.88 ± 0.00 34.66 ± 0.00 68.38 ± 0.00 44.65 ± 0.00
DMVC 46.31 ± 0.00 12.28 ± 0.00 42.99 ± 0.00 11.34 ± 0.00
CSMSC 67.98 ± 0.00 32.55 ± 0.00 61.38 ± 0.00 36.91 ± 0.00
GMC 75.86 ± 0.00 42.19 ± 0.00 68.57 ± 0.00 41.13 ± 0.00
MVC-DMF-PA 55.04 ± 0.88 11.37 ± 1.83 15.54 ± 3.35 49.05 ± 0.77
CGDD 76.26 ± 0.41 38.06 ± 1.85 69.00 ± 0.49 45.44 ± 0.73
MVC-DMLR 74.88 ± 0.00 40.47 ± 0.00 70.88 ± 0.00 49.23 ± 0.00

NGs

Co-Reg 24.83 ± 2.89 4.63 ± 2.27 32.68 ± 0.36 0.30 ± 0.49
MultiNMF 30.80 ± 0.00 15.09 ± 0.00 32.99 ± 0.00 2.99 ± 0.00
DMVC 39.56 ± 0.11 15.52 ± 0.09 34.22 ± 0.07 12.65 ± 0.05
CSMSC 98.20 ± 0.00 93.92 ± 0.00 96.43 ± 0.00 95.54 ± 0.00
GMC 98.20 ± 0.00 93.92 ± 0.00 96.43 ± 0.00 95.54 ± 0.00
MVC-DMF-PA 45.66 ± 2.43 23.94 ± 3.15 14.90 ± 1.67 34.72 ± 1.60
CGDD 97.68 ± 0.11 92.41 ± 0.25 95.38 ± 0.21 94.23 ± 0.27
MVC-DMLR 98.40 ± 0.00 94.61 ± 0.00 96.81 ± 0.00 96.02 ± 0.00
w
l
m
p

t

acceptable for two reasons. First, difference between MVC-DMLR and
CGDD is subtle, i.e., 74.88% vs 76.22%. Second, MVC-DMLR is also
superior to CGDD and GMC in terms of F-score and ARI. In all, the pro-
posed algorithm significantly outperforms these baselines. In details,
ACC of MVC-DMLR is 91.82% for BBC, 92.29% for BBCSport, 79.88%
for 3sources, 57.25% for Reuters, 59.69% for CiteSeer, and 98.40%
for NGs, whereas that of MVC-DMF-PA is 75.48% for BBC, 68.54%
for BBCSport, 54.89% for 3sources, 49.85% for Reuters, 26.87% for
CiteSeer, and 45.66% for NGs, respectively. Furthermore, the proposed
algorithm is superior to baselines in terms of F-score and ARI for all
datasets, implying that MVC-DMLR avoids identifying clusters with
large sizes. The reason why MultiNMF and GMC are inferior to others
is that they only explore consistency of different views, failing to
9 
discover relations of various views. In contrast, MVC-DMLR, CSMSC
and CGDD takes both consistency and diversity into consideration,

hich improves performance of clustering. Although CSMSC and CGDD
earn diversity and consistency of various views, they fail to exploit
ulti-level representation of multi-view data, resulting in undesirable
erformance.

Several reasons accounts for superiority of the proposed algorithm.
First, MVC-DMLR learns multi-level representation of objects with ma-
trix factorization, where the hierarchical representation is exploited,
providing a comprehensive and precise way to characterize the in-
rinsic structure of multi-view data. Second, MVC-DMLR learns multi-

layer graphs of each view, where the indirected topological informa-
tion is explored, thereby replenishing the original features of objects.
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Third, MVC-DMLR separates diversity and consistency of various views,
thereby improving performance of multi-view clustering. These results
demonstrate that the proposed multi-level topology representation is
promising for multi-view clustering.

5.6. Ablation study

Since MVC-DMLR simultaneously learns multi-level topology repre-
sentation, and diversity and consistency learning, which are integrated
with regularization. Thus, it is necessary to conduct an ablation study,
where importance of these items are investigated.

Two variants of MVC-DMLR are generated by setting either 𝜆=0 or
𝛾=0, where the first variant removes diversity of each view, and the
second one deletes relations of diversity and consistency. Performance
of MVC-DMLR and its variants on all datasets in terms of ACC is shown
in Table 4, where ACC of MVC-DMLR dramatically decreases by remov-
ing either of them. For example, ACC of MVC-DMLR is 91.82% for BBC,
2.31% for BBCSport, 82.14% for ORL, 72.61% for Yale, 57.25% for
euters, 75.37% for WebKB, and 98.40% for NGs, respectively. How-

ever, it significantly drops to 83.18% for BBC, 79.16% for BBCSport,
5.53% for ORL, 64.07% for Yale, 46.97% for Reuters, 50.25% for
ebKB, and 76.25% for NGs if 𝜆=0. These results demonstrate diversity

s critical for the characterization of structure of clusters in multi-view
ata.

Furthermore, ACC of MVC-DMLR incredibly descends to 75.13% for
BBC, 77.38% for BBCSport, 75.83% for ORL, 66.51% for Yale, 27.61%
for Reuters, 66.02% for WebKB, and 93.22% for NGs if relations
between diversity and consistency of various views is deleted, i.e., 𝛾=0.
These results prove that relations between diversity and consistency is
also critical for MVC-DMLR, indicating that diversity and consistency
re complementary information for the characterization of multi-view
ata. And, MVC-DMLR seamlessly integrates these two issues with
egularization.

6. Conclusion

Complex systems are more precisely characterized with multiple
views, and the resulted in multi-view data provide an opportunity
to exploit structure and functions of systems. However, state-of-the-
art methods are criticized for failing to capture intrinsic structure
of features. In this study, we propose a novel multi-view clustering
method, which learns the multi-level topology representation, and
exploits relations among views by exploring structure consistency and
diversity. Experimental results demonstrate that the proposed algo-
rithm outperforms state-of-the-art baselines, indicating that multi-level
opology structure is promising for characterizing multi-view data.

There are some possible directions for further study, which are listed
s

- MVC-DMLR implicitly assumes that all views of data and levels
of representation are equal. Actually, this hypothesis deviates
from the expectation. How to automatically learn weights for
each view and each representation level is critical for further
improve performance of clustering.

- Even though the proposed method learns multi-level topology
representation of multi-view data, MVC-DMLR addresses con-
sistency and diversity of views at the graph level, ignoring
roles of vertices. Actually, roles of vertices is also promising for
clustering. Thus, how to exploit additional roles of vertices for
multi-level topology representation of multi-view data is also
interesting.

- MVC-DMLR employs NMF for feature learning of multi-view
data, which is time consuming. How to accelerate the proposed
algorithm for large-scale datasets is also promising. Furthermore,
relations between diversity and consistency are critical to model
structure of multi-view data.
10 
- MVC-DMLR adopts self-representation learning to construct
graphs for various views, which only characterizes linear re-
lations among objects. How to model and measure non-linear
relations among objects is very interesting.
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