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Abstract

This paper presents a new deformable model based on
charged particle dynamics and geometric contour propaga-
tion. It detects object boundaries with a charged active con-
tour that propagates under the influence of Lorentz forces in
an image-based electrostatic field. We make use of level set
representation to allow topological changes to be handled
naturally. Also, we build on the centre of divergence con-
cept towards automatic initialisation.

1 Introduction

The nonparametric geometric active contour introduced
in [1] is a significant improvement over the parametric
snake [3] in that it can naturally handle topological changes.
However, it still suffers from drawbacks such as a small cap-
ture range, edge leakage, and sensitivity to initialisation.
There have been numerous improvements and modifica-
tions to both parametric and geometric snakes, for example
the Gradient Vector Flow (GVF) snake [6] and the geomet-
ric GVF snake [4] respectively, which use a bi-directional
external force field that provides long-range capture of ob-
ject boundaries from either side. Nonetheless, these snake
models require manual initialisation, especially when there
exist internal boundaries separating embedded objects, i.e.
an object which has both interior and exterior boundaries.

Recently, a new formulation for a deformable model
called the charged particle model (CPM) was introduced
by Jalba et al. [2]. CPM can capture object boundaries
over the entire image with a set of free charged particles
moving in an electrostatic field computed within the image
domain. The free charged particles are attracted towards
object boundaries by an image-based external force field,
while at the same time being repelled by one another by a
particle-based internal force. While an initialisation step is
still required, it is certainly less pivotal than in the snake
model and the charged particles can be placed entirely in-
side or outside of the object, or across boundaries. This re-
duced sensitivity to initial conditions is due to CPM’s large

capture range enabling it to detect boundaries over the entire
image. The shortcomings of the CPM model are its weak-
ness in localising objects in busy texture images and that it
can not guarantee closed final contours.

Here we propose a novel active contour, the charged con-
tour model (CCM), which defines a geometric active con-
tour based on charged particle dynamics. The motivation is
that by combining ideas from the contour and particle mod-
els, a more efficient and accurate force field is generated,
resulting in a better fitting active contour. CCM is better
able in handling highly textured images, and as it is based
on geometric contours, it eliminates CPM’s possible prob-
lem of unclosed contours. It benefits from an image based
mesh-to-particle force field as well as geometric contour
propagation. However, because it is based on a geometric
contour, CCM loses CPM’s reduced sensitivity to initiali-
sation. Hence, we also propose an automatic initialisation
step which extends the centre of divergence concept in [5].

2 Background

In charged particle dynamics, a set of free-moving pos-
itively charged particles is placed in a field that has a dis-
tribution of negative fixed charges, forming an electrosta-
tic field around the charged particles. Each particle in the
field will then be attracted towards the fixed charges nearby
under the influence of a mesh-to-particle (Lorentz) force.
Meanwhile, all the positive charges will be repelled by one
another by a repulsive particle-to-particle (Coulomb) force.

Consider an electrostatic field with M negative fixed
charges and N positive free particles, with the k" fixed
charge e;, < 0 at grid position Ry, and the i*" free parti-
cle charge g; > 0 at position r;. Then, the Lorentz force F;
(in the absence of a magnetic field) and the Coulomb force
F. acting on the ith free particle are defined as [2]:
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where ¢ is the electric permittivity of free space. Eq. (1)
states that the Lorentz force acting on each free particle is
the sum of the forces imposed onto it by all the fixed charges
in the electrostatic field. Eq. (2) states that the Coulomb
force is the sum of the forces imposed onto a particle by
all the other free particles, and as this changes dynamically
with distance between particles, it needs to be updated over
each particle movement. These two forces play the roles
of external and internal forces in a deformable model for
image segmentation. The electrostatic field is simulated by
equating the edge map magnitude to negative charge e, for
each pixel k.

This CPM model [2] benefits from an initialisation that
is largely insensitive to placement without special initial
conditions. However, the CPM model is prone to over-
segmentation, especially in highly textured images, e.g. see
top row of Fig. 6. It can also be seen that CPM can not
guarantee closed contours. This inevitably results in breaks
and gaps in the recovered object boundaries particularly if
the object has weak edges or is partially occluded.

3 A New Charged Contour Model (CCM)

We propose a model built on the basis of charged particle
dynamics and active contour evolution. CCM detects ob-
jects starting with a positively charged active contour that
propagates in an image-based electrostatic field under the
influence of Lorentz forces. Since the charged contour is in
fact a set of ‘connected particles’, Coulomb forces do not
apply and instead we use the geometric curvature flow for
model regulation, implemented using level-sets.

A positively charged contour is placed in an image-based
electrostatic field in which each fixed charge is computed
as e, = —f(xg,yr) < 0, where f(z,y) is the image edge
map. Then, the Lorentz force field is obtained using (1).
As the Lorentz force decays with squared distance, it pro-
duces weak flows in homogeneous areas and stronger flows
closer to edges. This is an undesirable feature since, driven
by these forces, the active contour can hardly move in ho-
mogeneous areas, whilst moving fast in edge areas where it
is likely to oscillate around edges. As a result, we normalise
the Lorentz force field to speed up the model convergence,
such that the normalised field has strong flows in homoge-
neous areas and weak, or close to zero, flows near edges
which finally stop the model. At edge locations the strength
of the flows are already drastically reduced due to the coun-
teractions among the surrounding fixed charges. This is a
good indication of where the real edges are located. There-
fore, our edge-preserving normalisation process takes into
account the information supplied by the edge map:
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Figure 1. Original and normalised Lorentz
fields & close-ups on edge and homoge-
neous regions.

where ey, is the fixed charge located at r in the edge map.
As |ex| — 0 in homogeneous areas, then exp(—|ex|) — 1,
and the normalised Lorentz force Fj(rj) has maximum
magnitude tending to unity. When |ej| increases in edge
regions, exp(—|ex|) scales F)(ry) inversely proportional to
the edge strength |e| and so Fj(r},) reaches its minimum at
the strongest edge location. Thus, the normalised Lorentz
force field has the strongest vector flows in homogeneous
regions which start to attenuate smoothly when entering
edge neighbourhoods. Fig. 1 shows examples of original
and normalised Lorentz force field of a simple shape with
both interior and exterior boundaries along with a close-up
look into both fields. In the homogeneous areas shown, F;
forces are too weak to propagate the contour model, while
the F; forces are sufficiently strong.
We use curvature flow for contour regularisation:
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where « is a positive constant, x denotes the curvature flow,
g(z,y) = (1 + f(z,y))"! is a stopping term, and N de-
notes the contour inward normal. The first term regulates
the contour and the second term attracts it towards object
boundaries. We embed the charged contour in a level set
representation so that it can propagate in the normalised
Lorentz force field with topological flexibility:
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where u denotes the level-set. As the geometric contour al-
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Figure 2. From left: the original image, initial
CCM, and snapshots of contour propagation.

ways propagates in the direction of its normal N, it is unable
to move when the Lorentz forces are tangent to the contour.
We compensate for this by adding an extra adaptive balloon
force similar to Paragios et al. [4]. Hence the final formula-
tion of CCM becomes:

9 g, y)uN + (1 — a){(1 - 1(Fx) Fy+  (©6)

ot
V(Fn)g(@, y)sign(Fn) N

where Fy = F} - N is the component of F along the con-
tour normal, and v = exp(—A|.|) is a zero-mean Laplacian
function which balances the contributions from the Lorentz
and extra balloon forces (A = 3 in all our experiments deter-
mined empirically). When the Lorentz forces and the con-
tour are close to tangent, the balloon force contributes to
shrink or expand the contour based on sign(Fy). Other-
wise, the contour propagates mainly under the influence of
Lorentz forces.

Fig. 2 shows the propagation of CCM on a synthetic im-
age. As can be seen, CCM does not need to be initialised
completely exterior or interior to the objects. However, in
practice, background noise and features dictate a more elab-
orate initialisation scheme. Unlike other deformable models
based on diffused vector fields, such as the GVF snake [6]
and geometric GVF snake [4], the normalised Lorentz field
in CCM reflects image features in a more natural manner
as it simulates the physical characteristics of image features
and does not involve an iterative diffusion process.

4 Automatic Initialisation

In [5], an automatic initialisation approach was demon-
strated for the parametric GVF snake in which the directions
of every 2 x 2 neighbouring GVF vectors were examined
to determine if they were sufficiently divergent from each
other. If so, their position was considered a centre of di-
vergence and individual initial contours were automatically
placed around them. However, this approach will need to
perform at a higher scale (e.g. 3 x 3) to find centres of di-
vergence in more complex images than those shown in [5].
For example, there are 4 sets of 2 x 2 neighbouring vectors
in the 3 x 3 centre of divergence shown in Fig. 3(b), and
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Figure 3. Centre of divergence for (a) a simple
shape (b) a real image. (c) outward normal
reference vectors for 3x3 and 5x5 windows.

none of them would be considered a centre of divergence by
[5] and consequently lead to failure on this detection.

We propose an alternative test for divergence which com-
pares neighbouring vectors with a set of reference vectors
and signals a centre of divergence if the vectors’ deviation
from the reference vectors is within an acceptable range.
For a given image, let P, be the pixels in a window centred
at pixel p(z,y) and N, be the outward reference vector
normals in the window (Fig. 3(c)). We state the potential
P(x,y) of pixel p(x,y) to be a centre of divergence as:

P(x,y) = Z sign[F}(Py) - Ny — cos(%)] (7

Each vector around p(z,y) that deviates from its reference
vector by < 45° will contribute to the potential of p(z,y)
being a centre of divergence. If P(x, y) is larger than a con-
stant Pp,in, then p(x, y) is considered a centre of divergence.
In all our experiments P,,;, = 4. However, if we place an
initial contour around every centre of divergence, then con-
tours propagating from both inside and outside the object
will merge at object boundaries due to the level-set formu-
lation, and thus lead to false detection. Hence, we select the
centres of divergence that are in the brightest regions (top
20%) of the image based on the hypothesis that these will
belong either to the object or the background. The contours
then segment the object from either the inside or the out-
side. This works surprisingly well for a variety of images
even though initial contours may fall both within and out-
side the objects of interest (e.g. see middle row of Fig. 5).
In comparison, in [5], initial contours are placed around all
the centres of divergence, which then necessitates an extra
procedure to remove the pseudo boundaries. The number of
initial contours does not cost extra in our implementation as
they are all handled by the same level set.

Fig. 4 shows an example of our automatic centre of
divergence selection. The automatic initialisation scheme
proposed here is both convenient for our model and can be
used for other vector field based contour models too.



Figure 4. Top: Lorentz force field with cen-
tres of divergence (w1-w5). w5 is discarded
(outside the object), close-ups of w1 & w3.
Bottom: automatic initialisation, propagating
CCM, final result.

Figure 5. Each row: automatically initialised
CCM and final result.

5 Results

CCM has shown promising results and can detect mul-
tiple interior and exterior object boundaries (Fig. 5). As
mentioned before, CPM [2] can suffer problems on highly
textured images, leaving gaps in the recovered boundaries.
CCM results in closed boundaries and is more robust to
noise as the automatically initialised contours will merge
at broken edges or textures that do not belong to any bound-
aries. Fig. 6 shows a CCM result in comparison to CPM.
Further comparative results of CCM against both CPM and

Figure 6. Top: initial CPM particles and final
result on a highly textured image. Bottom:
automatically initialised and final CCM resuilt.

geodesic snakes are available online'.
6 Conclusions

We have introduced a charged contour model for object
detection based on charged particle dynamics and active
contour propagation. An automatic initialisation approach
was also proposed to automate the model. The method is
particularly suitable in images where there are one or more
specific and salient objects of interest to be found.

A drawback of the current model is that Lorentz forces
originating from weak edges may be overcome by those
from strong edges nearby, leaving them undetected. Also,
the automatic initialisation scheme only works well given
that the object and background are different enough so that
the centres of divergence either inside or outside the object
can be discarded. For future work we plan to extend the
particle model to overcome these shortcomings.
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